2/18

MEETING NOTES

Download solstice for next time

Use case 3.1 has a mismatch w/ the assumption of Ul layout for terminal

Use cases should be more orthogonal with each other

Will need to decide on a Ul interface

We are missing the purpose of how each use case helps in achieving the full scenario -
need to fix this

Think as if we are selling to investor

Make sure there is a bridge between use cases and full scenario

1st use case - after testing this will allow us to add a Ul which is relevant no matter what
2nd use case - completing this successfully allows us to move on to use case 3

Use top-down to sell work, bottom-up to describe work

Final presentation should be top-down

Make sure we position our use cases properly in the big picture scenario

Start mapping out functional and nonfunctional requirements

Figure out our individual roles -

Goce says that postgres is a good choice

Figure out what data we will be storing - files, email, username,

Write down formally why we chose postgres and any questions that we have so that we
can answer them

Make it explicit as to why use cases are necessary and how they fit into bigger picture
Have a set timeline of when we will make decisions

Foresee scenarios for individual testing vs integration testing - come up with at least one
example for next week

Come up with representative architecture, use case, conceptual diagrams

OBJECTIVES FOR NEXT MEETING

Make diagrams - architecture, use case, concept

Come up with individual testing vs integration testing example

Justify ourselves as to what our project has to offer

** one thing we could do is go to git and find who has similar projects to ours - what
could sell us is changing the experience of something that is already there - add new
features that will make the old thing better

Come up with a more formal project description - enable some type of matching that we
are not able to do in git - “which pairs are most similar?”

o Basically git currently enables us to have a single similarity set, but for our project
we want to “join” them to differentiate ourselves. Join a project database with
itself and find similarities - find a pure match of tokens
In this case we can assume that every project has a description about what it is.
The problem is how do we define similarity (pick simplest possible solution -
parse one, parse the other, do they have words that match?”

o Then do the join
e Explain / justify how we link the simple use cases with the big picture - identify our roles
within the big picture - switch assumptions to functional/nonfunctional requirements,
make samples of unit tests vs integration tests that we foresee. Then we will move onto

diagrams and identifying timelines.

