
2/18
MEETING NOTES

● Download solstice for next time
● Use case 3.1 has a mismatch w/ the assumption of UI layout for terminal
● Use cases should be more orthogonal with each other
● Will need to decide on a UI interface
● We are missing the purpose of how each use case helps in achieving the full scenario -

need to fix this
● Think as if we are selling to investor
● Make sure there is a bridge between use cases and full scenario
● 1st use case - after testing this will allow us to add a UI which is relevant no matter what
● 2nd use case - completing this successfully allows us to move on to use case 3
● Use top-down to sell work, bottom-up to describe work
● Final presentation should be top-down
● Make sure we position our use cases properly in the big picture scenario
● Start mapping out functional and nonfunctional requirements
● Figure out our individual roles -
● Goce says that postgres is a good choice
● Figure out what data we will be storing - files, email, username,
● Write down formally why we chose postgres and any questions that we have so that we

can answer them
● Make it explicit as to why use cases are necessary and how they fit into bigger picture
● Have a set timeline of when we will make decisions
● Foresee scenarios for individual testing vs integration testing - come up with at least one

example for next week
● Come up with representative architecture, use case, conceptual diagrams

OBJECTIVES FOR NEXT MEETING

● Make diagrams - architecture, use case, concept
● Come up with individual testing vs integration testing example
● Justify ourselves as to what our project has to offer
● ** one thing we could do is go to git and find who has similar projects to ours - what

could sell us is changing the experience of something that is already there - add new
features that will make the old thing better

● Come up with a more formal project description - enable some type of matching that we
are not able to do in git - “which pairs are most similar?”

○ Basically git currently enables us to have a single similarity set, but for our project
we want to “join” them to differentiate ourselves. Join a project database with
itself and find similarities - find a pure match of tokens

○ In this case we can assume that every project has a description about what it is.
○ The problem is how do we define similarity (pick simplest possible solution -

parse one, parse the other, do they have words that match?”

○ Then do the join
● Explain / justify how we link the simple use cases with the big picture - identify our roles

within the big picture - switch assumptions to functional/nonfunctional requirements,
make samples of unit tests vs integration tests that we foresee. Then we will move onto
diagrams and identifying timelines.

