

W I D E

Web Integrated Development Environment

Group 17
Adviser - Dr. Goce Trajcevski

Michael Davis - Database Management and Meeting Facilitator

Lily Krohn - Front End Developer and Meeting Scribe
Chris Lopez - Backend Developer and Record Manager

Kyle Marek - Front End Developer and Testing Engineer
Zachary Mohling - Full Stack Engineer and Project Manager

Griffin Stout - Front End Developer and Web Manager

Team Email: sddec20-17@iastate.edu
Team Website: https://sddec20-17.sd.ece.iastate.edu

Executive Summary

Development Standards & Practices Used

● Agile Development
● Continuous Integration / Continuous Delivery (CI / CD)
● Test Driven Development (TDD)
● Potentially Use Pair Programming
● Source Control (Gitlab)
● Task Management Software(Trello or Kanban)
● Backend Documentation (API Docs/Method Stubs)
● Organized file structure
● High level design
● Web design standards

Summary of Requirements

● Application is accessible via Web Browser
● Multiple users are able to collaborate on the same file simultaneously
● Application supports the compilation of C documents.
● Application supports an online text editor

○ Syntax Highlighting
○ Error Detection
○ Auto-completion

● Integrated version control via Git
● Server will store user files
● Backend will support direct peer to peer interaction via websockets
● Automatic file saving
● Support file version control
● Support live edits for files
● User will login to use the application via database verification
● We will need to utilize features of Google Cloud Platform
● Will also be utilizing open source softwares and libraries

2

Applicable Courses from Iowa State University Curriculum

● COM S 309
● COM S 327
● CPRE 288
● SE 339
● SE 329
● SE 185/ EE 285
● COM S 311
● COM S 363
● SE 319

New Skills/Knowledge acquired that was not taught in courses

● React.js
● Typescript
● Monaco Text Editor
● Kubernetes
● Google Cloud Platform
● Docker
● PostgreSQL

3

Table of Contents

1. Introduction 6
1.1 Acknowledgement 6
1.2 Problem and Project Statement 6
1.3 Operational Environment 6
1.4 Requirements 6
1.5 Intended Users and Uses 7
1.6 Assumptions and Limitations 7
1.7 Expected End Product and Deliverables 7

2. Specifications and Analysis 8
2.1 Proposed Approach 8
2.2 Design Analysis 8
2.3 Development Process 8
2.4 Conceptual Sketch 9

3. Statement of Work 9
3.1 Previous Work and Literature 9
3.2 Technology Considerations 9
3.3 Task Decomposition 9
3.4 Possible Risks and Risk Management 9
3.5 Project Proposed Milestones and Evaluation Criteria 9
3.6 Project Tracking Procedures 9
3.7 Expected Results and Validation 9

4. Project Timeline, Estimated Resources, and Challenges 10
4.1 Project Timeline 10
4.2 Feasibility Assessment 10
4.3 Personnel Effort Requirements 10
4.4 Other Resource Requirements 10
4.5 Financial Requirements 10

5. Testing and Implementation 11
5.1 Interface Specifications 11
5.2 Hardware and Software 11
5.3 Functional Testing 11
5.4 Non-Functional Testing 11
5.5 Process 11

4

5.6 Results 11

6. Closing Material 12
6.1 Conclusion 12
6.2 References 12
6.3 Appendices 12

5

1. Introduction

1.1 Acknowledgement
Special thanks to Dr. Goce Trajcevski for his help with project planning and development.

1.2 Problem and Project Statement
In a world that is becoming more dependent on cloud storage and cloud computing, there is more
of a focus on making software development less dependent on the personal machine. However,
almost all software is developed on a local machine by one collaborator at a time. Developing on
a machine requires additional steps to share files and download files from the internet. On top of
these additional steps, there is maintenance to ensure that the project will be able to run on
additional machines. All of these tedious steps and maintenance just simply to run the project can
be very time consuming and reduces the efficiency of software development.

The solution we propose to solve these issues is WIDE, a web integrated development
environment. WIDE is a web application, meaning it will be accessible through a browser by
going to the URL. Through WIDE, users are able to save files, develop software, and run
projects all on the cloud. Users will no longer need to download files or upload files from their
machine to the cloud. Neither will they have to be concerned with the project running on their
machine, because all code can be compiled and executed on the remote server. To top it all off,
WIDE will enable the ability for users to collaborate on files together with real time updates.
WIDE is the path to a more efficient, and less dependant future for software development.

1.3 Operational Environment
The operating environment of WIDE will be from a device’s web browser and served from
various public cloud services. The targeted frontend environment will be web browsers of
consumer desktop and laptop operating systems.

1.4 Requirements
Functional Requirements

● Collaborative editing of source files
● Built-in Git UI for version control
● Authentication of users for joining and logging into projects
● Autosaving and source history
● Create/Import project
● Execution output and interaction
● Compile and execute artifacts

Non-Functional Requirements

6

● Fast response time
● Must support an adequate amount of users
● Sufficient storage space available

1.5 Intended Users and Uses
Our intended user is a company with software development teams that doesn’t want to spend lots
of money or time setting up and installing software on everyone's seperate computer. The
intended use is for when teams want to work on the same code at one time without having to
install software or have multiple people work together on the same computer.

1.6 Assumptions and Limitations
Assumptions

● Basic security will be implemented (such as database protection)
● Terminal interface is the only way to run a program (No GUI will be shown to the user if

they create one in their program)
● Our application will only include text in English

Limitations
● Remote terminal security will not be included at first because it is not necessary for proof

of concept of the project and is quite complex to implement
● C will be the only available language at first due to the fact that C is well defined and

small, making it a good first language to incorporate
● Advanced security implementations will be lower priority compared to our main features
● Autosave functionality will start as a timed event, given enough time we will implement

an autosave on difference within the files
● We will need to utilize features of Google Cloud Platform - budget around $500

1.7 Expected End Product and Deliverables

● Service-oriented Backend System
○ A microservice-based system which supports the functional requirements. Each

service will be containerized and orchestrated to simplify deployment and provide
resilience.

● IDE Web Application / Editor
○ Our front end will feature a web based-text editor where users can simultaneously

edit, debug, and execute code. Our delivery date for this product will be
December 2020, at the end of the semester.

● Documentation of Configuration Files

7

○ With the delivery of our application we will also provide documentation of the
configuration files which will be used to define the build processes in order to run
our app.

2. Specifications and Analysis

2.1 Proposed Approach
We have implemented a basic text editor that we will use to expand on for the rest of our project.
We have done this by following our functional and non-functional requirements as listed in
section 1.4. The rest of our approach method will be improving our basic text editor and
implementing the functional requirements of collaborative editing of source files, a built-in Git
UI, the authentication of users when joining and logging into projects, autosaving and source
history, and many more. We will also have the non-functional requirements of fast response
time, allowing for support of adequate amount of users, and having sufficient storage space
available.

2.2 Design Analysis
So far we have set up our gitlab repository, done research on the technologies we will need to
implement in our project, and created a basic implementation of the text editor that our project
will be based upon. We have made several conceptual diagrams to organize the layout of all of
the components that will make up our project. Through meetings with our faculty mentor, we
have identified assumptions and loose ends present in our project and have developed several use
cases and scenarios to support our project ideas. So far we have made good progress and we will
continue by solidifying our use cases and progressing on development based on this.

2.3 Development Process
We will be following an Agile Development Process featuring 2 week sprints. This will allow us
to continuously develop and produce code and will allow for easy code refinement. We will also
be executing a Test Driven Development process in order to prioritize testing throughout the
creation of our project.

8

2.4 Conceptual Sketch

Multiple contributors will be able to make live concurrent edits in the same file through a web
browser. The web browser interfaces with the web server to provide the content and data to the
user and the data server. The projects will be hosted on the data server for all purposes. When the
user opens a file, the data will be pulled from the data server and continually updated. If another
user makes an edit, the changes will be sent to the data server and updated on all other user
displays.

9

3. Statement of Work

3.1 Previous Work and Literature

3.2 Technology Considerations

3.3 Task Decomposition

3.4 Possible Risks and Risk Management

3.5 Project Proposed Milestones and Evaluation Criteria

3.6 Project Tracking Procedures
We will be using GitLab’s built in Scrum infrastructure to track our progress during this project.

3.7 Expected Results and Validation

10

4. Project Timeline, Estimated Resources, and Challenges

4.1 Project Timeline
The project will be completed by December 2020.

4.2 Feasibility Assessment
Some foreseen challenges of our project are that we have lots of functionality that we hope to
implement - however, due to the sake of time we will most likely have to cut back on some
deliverables. We will aim to implement our main functionality first to our best ability and then
expand from there.

4.3 Personnel Effort Requirements

4.4 Other Resource Requirements

4.5 Financial Requirements
Our estimated budget for this project is $500.

11

5. Testing and Implementation

5.1 Interface Specifications

5.2 Hardware and Software

5.3 Functional Testing

5.4 Non-Functional Testing

5.5 Process

5.6 Results

12

6. Closing Material

6.1 Conclusion

6.2 References

6.3 Appendices

13

