

W I D E

Web Integrated Development Environment

Group 17
Adviser - Dr. Goce Trajcevski

Michael Davis - Database Management and Meeting Facilitator

Lily Krohn - Front End Developer and Meeting Scribe
Chris Lopez - Backend Developer and Record Manager

Kyle Marek - Front End Developer and Testing Engineer
Zachary Mohling - Full Stack Engineer and Project Manager

Griffin Stout - Front End Developer and Web Manager

Team Email: sddec20-17@iastate.edu
Team Website: https://sddec20-17.sd.ece.iastate.edu

Executive Summary

Development Standards & Practices Used

● Agile Development
● Continuous Integration / Continuous Delivery (CI / CD)
● Test Driven Development (TDD)
● Potentially Use Pair Programming
● Source Control (Gitlab)
● Task Management Software(Trello or Kanban)
● Backend Documentation (API Docs/Method Stubs)
● Organized file structure
● High level design
● Web design standards

Summary of Requirements

● Application is accessible via Web Browser
● Multiple users are able to collaborate on the same file simultaneously
● Application supports the compilation of C documents.
● Application supports an online text editor

○ Syntax Highlighting
○ Error Detection
○ Auto-completion

● Integrated version control via Git
● Server will store user files
● Backend will support direct peer to peer interaction via websockets
● Automatic file saving
● Support file version control
● Support live edits for files
● User will login to use the application via database verification
● We will need to utilize features of Google Cloud Platform
● Will also be utilizing open source softwares and libraries

2

Applicable Courses from Iowa State University Curriculum

● COM S 309 - Long term project management, team project management
● COM S 327 - Advance programming, large project development
● S E 329 - Project management
● S E 185/ EE 285 - Introduction into programming
● COM S 311 - Algorithms and advanced data structures
● COM S 363 - Database management systems
● S E 319 - Concurrent programming

New Skills/Knowledge acquired that was not taught in courses

● React.js
● Typescript
● Monaco Text Editor
● Kubernetes
● Google Cloud Platform
● Docker
● PostgreSQL

3

Table of Contents

1. Introduction 6
1.1 Acknowledgement 6
1.2 Problem and Project Statement 6
1.3 Operational Environment 6
1.4 Requirements 6
1.5 Intended Users and Uses 7
1.6 Assumptions and Limitations 7
1.7 Expected End Product and Deliverables 7

2. Specifications and Analysis 8
2.1 Proposed Approach 8
2.2 Design Analysis 8
2.3 Development Process 8
2.4 Conceptual Sketch 9

3. Statement of Work 9
3.1 Previous Work and Literature 9
3.2 Technology Considerations 9
3.3 Task Decomposition 9
3.4 Possible Risks and Risk Management 9
3.5 Project Proposed Milestones and Evaluation Criteria 9
3.6 Project Tracking Procedures 9
3.7 Expected Results and Validation 9

4. Project Timeline, Estimated Resources, and Challenges 10
4.1 Project Timeline 10
4.2 Feasibility Assessment 10
4.3 Personnel Effort Requirements 10
4.4 Other Resource Requirements 10
4.5 Financial Requirements 10

5. Testing and Implementation 11
5.1 Interface Specifications 11
5.2 Hardware and Software 11
5.3 Functional Testing 11
5.4 Non-Functional Testing 11
5.5 Process 11

4

5.6 Results 11

6. Closing Material 12
6.1 Conclusion 12
6.2 References 12
6.3 Appendices 12

Figures

1.1 Conceptual Sketch 9
2.1 Gantt Chart 14

5

1. Introduction

1.1 Acknowledgement
Special thanks to Dr. Goce Trajcevski for his help with project planning and development.

1.2 Problem and Project Statement
In a world that is becoming more dependent on cloud storage and cloud computing, there is more
of a focus on making software development less dependent on the personal machine. However,
almost all software is developed on a local machine by one collaborator at a time. Developing on
a machine requires additional steps to share files and download files from the internet. On top of
these additional steps, there is maintenance to ensure that the project will be able to run on
additional machines. All of these tedious steps and maintenance just simply to run the project can
be very time consuming and reduces the efficiency of software development.

The solution we propose to solve these issues is WIDE, a web integrated development
environment. WIDE is a web application, meaning it will be accessible through a browser by
going to the URL. Through WIDE, users are able to save files, develop software, and run
projects all on the cloud. Users will no longer need to ​download files​ or upload files from their
machine to the cloud. Neither will they have to be concerned with the project running on their
machine, because all code can be compiled and executed on the remote server. To top it all off,
WIDE will enable the ability for users to collaborate on files together with real time updates.
WIDE is the path to a more efficient, and less dependent future for software development.

1.3 Operational Environment
The operating environment of WIDE will be from a device’s web browser and served from
various public cloud services. The targeted frontend environment will be web browsers of
consumer desktop and laptop operating systems.

1.4 Requirements
Functional Requirements

● Collaborative editing of source files
● Built-in Git UI for version control
● Authentication of users for joining and logging into projects
● Autosaving and source history
● Create/Import project
● Execution output and interaction
● Compile and execute artifacts

Non-Functional Requirements

6

● Fast response time
● Must support an adequate amount of users
● Sufficient storage space available

1.5 Intended Users and Uses
Our intended user is a company with software development teams that doesn’t want to spend lots
of money or time setting up and installing software on everyone's seperate computer. The
intended use is for when teams want to work on the same code at one time without having to
install software or have multiple people work together on the same computer.

1.6 Assumptions and Limitations
Assumptions

● Basic security will be implemented (such as database protection)
● Terminal interface is the only way to run a program (No GUI will be shown to the user if

they create one in their program)
● Our application will only include text in English

Limitations
● Remote terminal security will not be included at first because it is not necessary for proof

of concept of the project and is quite complex to implement
● C will be the only available language at first due to the fact that C is well defined and

small, making it a good first language to incorporate
● Advanced security implementations will be lower priority compared to our main features
● Autosave functionality will start as a timed event, given enough time we will implement

an autosave on difference within the files
● We will need to utilize features of Google Cloud Platform - budget around $500

1.7 Expected End Product and Deliverables

● Service-oriented Backend System
○ A microservice-based system which supports the functional requirements. Each

service will be containerized and orchestrated to simplify deployment and provide
resilience.

● IDE Web Application / Editor
○ Our front end will feature a web based-text editor where users can simultaneously

edit, debug, and execute code. Our delivery date for this product will be
December 2020, at the end of the semester.

● Documentation of Configuration Files

7

○ With the delivery of our application we will also provide documentation of the
configuration files which will be used to define the build processes in order to run
our app.

2. Specifications and Analysis

2.1 Proposed Approach
We have implemented a basic text editor that we will use to expand on for the rest of our project.
We have done this by following our functional and non-functional requirements as listed in
section 1.4. The rest of our approach method will be improving our basic text editor and
implementing the functional requirements of collaborative editing of source files, a built-in Git
UI, the authentication of users when joining and logging into projects, autosaving and source
history, and many more. We will also have the non-functional requirements of fast response
time, allowing for support of adequate number of users, and having sufficient storage space
available.

2.2 Design Analysis
So far we have set up our gitlab repository, done research on the technologies we will need to
implement in our project, and created a basic implementation of the text editor that our project
will be based upon. We have made several conceptual diagrams to organize the layout of all of
the components that will make up our project. Through meetings with our faculty mentor, we
have identified assumptions and loose ends present in our project and have developed several use
cases and scenarios to support our project ideas. So far we have made good progress and we will
continue by solidifying our use cases and progressing on development based on this.

2.3 Development Process
We will be following an Agile Development Process featuring 2 week sprints. This will allow us
to continuously develop and produce code and will allow for easy code refinement. We will also
be executing a Test Driven Development process in order to prioritize testing throughout the
creation of our project.

8

2.4 Conceptual Sketch

Figure 2.1

Multiple contributors will be able to make live concurrent edits in the same file through a web
browser. The web browser interfaces with the web server to provide the content and data to the
user and the data server. The projects will be hosted on the data server for all purposes. When the
user opens a file, the data will be pulled from the data server and continually updated. If another
user makes an edit, the changes will be sent to the data server and updated on all other user
displays.

9

3. Statement of Work

3.1 Previous Work and Literature
There are a few applications that resemble similarities to our proposed project (ex: CoderPad),
however they are lacking several things. CoderPad allows for simultaneous editing, however it
lacks integrated version control. There are other well functioning IDEs, such as Visual Studio
code, however there is no simultaneous editing. Our project will combine the features of
simultaneous editing, auto saving, version control integration, and the functionality of a typical
IDE to create a productive environment and allow for more efficient remote or in-person
teamwork.

Sources used for research:
McKinnon, Jenni. “10 Best IDE Software for Web Development (2020).” ​WebsiteSetup.org​, 1

Feb. 2020, websitesetup.org/best-ide-software/.

3.2 Technology Considerations
We’ve selected an ecosystem of technologies that have been proven in the industry to support
efficient, reliable software systems. The following is a list of our chosen technologies, and their
features which influenced our decision.

Infrastructure
Kubernetes

- Autonomous container orchestration
- Easy deployment
- Fault tolerance

Docker
- Provides a reproducible production environment
- Efficient alternative to virtual machines

Languages
Golang

- Standard library with built-in concurrency primitives
- Simple memory management
- Statically compiled into a single, versionable binary

TypeScript
- Strong typing system avoids increasing runtime error opportunities
- Included composite and utility types

10

Data
PostgreSQL

- Performant and scalable relational database
- Large community and corporate support and maintenance

Redis
- Fast key-value storage for server-side caching
- Simple and easy to use

Protocols
gRPC

- Fast and synchronous API calls
- Golang integration

WebRTC
- Supports peer-to-peer connections
- Best web protocol for real-time communication

3.3 Task Decomposition
The project can be broken down into some major tasks:

● Basic backend to frontend communication
● Account management and basic concurrent editing capabilities
● Concurrent editing implemented with much more functionality, version control

integration defined, concurrent editing with version control, and terminal functionality
allows the user to compile and run files

● Concurrent editing with version control is entirely complete and work is started on chat
communication

● App is tested and all features are fully functioning

3.4 Possible Risks and Risk Management
Our only risks as of now are time constraints and technology decisions. As we get more into
development, a risk we will have to consider is how we will handle security measures. We will
be dealing with user information so we will need to take some security precautions, but it should
not be the focus of our project. We will need to weigh these options and risks more at a further
date.

3.5 Project Proposed Milestones and Evaluation Criteria
Some of our proposed project milestones include:

● A GUI the user can interact with
● A monaco-based text editor that allows simultaneous editing as well as autosave

11

● Comprehensive database system to handle both our internal and external file structures as
well as users

● A way to share projects among users as well as register accounts and login
● Ability to import/create project as well as compile and execute it
● Integrate Git for version control
● A search feature that will allow users to look up projects based on keywords
● A chat feature that allows users to talk to each other

3.6 Project Tracking Procedures
We will be using GitLab’s built in Scrum infrastructure to track our progress during this project.

3.7 Expected Results and Validation
Our end goal is to create a comprehensive development environment based on the web that
allows teams to collaborate in real time, resulting in increased productivity without needing
setup. A list of expected results is included in ​Section 3.5​. We will verify that the results have
been met by testing our own project within our browsers as well as allowing our advisor to test
our project.

12

4. Project Timeline, Estimated Resources, and Challenges

4.1 Project Timeline
1. August 24th​ - Work towards the project officially begins.
2. September 1st​ ​-​ Basic backend to frontend communication.

a. Frontend
i. The User Interface is reactive.

ii. ​Frontend can make HTTP calls to the server.
b. Backend

i. The backend is able to perform CRUD operation with the database.
ii. The backend is able to take HTTP calls from the frontend

c. Database
i. PostgreSQL database holds tables.

ii. PostgreSQL tables are able to be modified.
3. October 1st - ​Account management is complete and basic concurrent editing capabilities.

a. Frontend
i. Accounts creation and login capabilities complete

ii. Simple websocket connection with server and other users.
iii. Able to view changes made by other remote users.

b. ​Backend
i. HTTP calls to manage account creation/editing are fully functional.

ii. Able to connect to users via websockets.
iii. Connect to Redis database is made.

c. Database
i. The PostgreSQL database is fully capable of managing user accounts.

ii. Redis database is connected to the server.
4. November 1st - ​Concurrent editing is implemented with much more functionality.

Version control integration is defined and we have begun implementing concurrent
editing with version control. Terminal functionality is mostly complete and allows the
user to compile and run files.

a. Frontend
i. The frontend allows the users to develop on the same file.

ii. Project compilation and execution works correctly on the app.
iii. First steps for version control integrating version control have been

complete.
b. Backend

i. Server is able to store files on Redis database.
ii. Server is able to compile and run projects and display output to the users.

13

iii. Server manages concurrent editing through websocket connections.
c. Database

i. Redis database can store/update files.
5. December 1st - ​Concurrent editing with version control is entirely complete. Work is

started on chat communication.
a. Frontend

i. The user interface is able to connect websockets specifically to any user
that is on the same session in the editor.

b. Backend
i. The backend is able to manage version control capabilities such as

branching, merging, and committing through libgit library.
c. Database

i. Redis is able to hold git objects.
ii. Redis database functions completely as an internal git repository.

6. December 11th - ​App is tested and all features are fully functioning.

Figure 2.2

Task 1 - Basic backend to frontend communication.
Task 2 - Account login and creation.
Task 3 - Concurrent Editing Capabilities.
Task 4 - Terminal view and project compilation/execution capabilities.
Task 5 - Version Control Integration
Task 6 - Chat feature implemented allowing integrated collaborator communication.

14

4.2 Feasibility Assessment
Some foreseen challenges of our project are that we have lots of functionality that we hope to
implement - however, due to the sake of time we will most likely have to cut back on some
deliverables. We will aim to implement our main functionality first to our best ability and then
expand from there.

4.3 Personnel Effort Requirements

Task Name Date (s) Effort Required

A GUI the user can interact
with

Sept 1 - Sept 15 Mainly frontend members

A Monaco-based text editor Sept 15 - Sept 30 Mainly frontend members

Comprehensive database
system

Sept 1 - Oct 1 Mainly backend members

Import / Create / Compile
project

Oct 2 - Oct 30 Both frontend and backend
members, mainly backend
members

Accounts / Login TBD TBD

Share Project Feature TBD TBD

Search Project Feature TBD TBD

Chat Feature TBD TBD

The table above displays a few of our tasks and their estimated start - end dates, along with the
required effort in terms of which teams / members will need to focus on the task and possibly the
estimated hours required to complete. We will aim to complete the first four tasks first, as these
make up our basic product, and determine the rest based on time constraints.

4.4 Other Resource Requirements
Our project does not require any physical resources or materials as it is a software based project.

4.5 Financial Requirements
Our estimated budget for this project is $500. This will be used for public cloud infrastructure.

15

16

5. Testing and Implementation

5.1 Interface Specifications

5.2 Hardware and Software

5.3 Functional Testing

5.4 Non-Functional Testing

5.5 Process

5.6 Results

17

6. Closing Material

6.1 Conclusion

6.2 References

6.3 Appendices

18

